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1. Executive Summary 
 
The Defense High Performance Computing (HPC) community has long had a need for 
productivity metrics and methodologies for its computing systems.  Unfortunately, 
there are no widely accepted standards for measuring even the performance of HPC 
systems (other then the discredited Linpack benchmark1) much less their productivity 
when applied to the unique computational challenges facing Defense scientists and 
engineers as well as operational users.  In coordination with MITRE and Lincoln 
Laboratory, the University of Southern California’s Information Sciences Institute (ISI) 
undertook an effort to address the lack of HPC productivity metrics and methodology 
as part of the Defense Advanced Research Projects Agency’s (DARPA) High 
Productivity Computing Systems (HPCS) program. 
 
ISI’s initial role in the HPCS program was to develop, in close coordination with 
DARPA and the broader Defense computing community, an understanding of the needs 
of the Defense computing community.  There are differing requirements for application 
developers, users of these applications, and the broad communities that must share 
large-scale assets such as those provided by the High Performance Computing 
Modernization Program (HPCMP).  ISI accomplished this goal by studying the 
requirements of a number of Defense users, developing the HPCS benchmarks with 
MITRE, and representing these Defense needs to HPCS vendors and the broader 
community at HPCS principle investigator meetings. 
 
The second of ISI’s initial tasks was to organize a team that could define productivity 
and develop a consensus for it within the broader HPC community. The team included 
leading experts in the field from universities and the Defense industry.  We leveraged 
existing activities already supported by the Department of Energy (DOE), the National 
Science Foundation (NSF), and of course, the Department of Defense (DOD).  Along 
with the broader HPCS community, the team helped to determine what aspects of 
productivity were neither well defined nor measured, and proposed steps to rectify this.  
These results were briefed to DARPA and at HPCS Principal Investigator (PI) meetings 
thereby helping define the goals of the DARPA HPCS program’s second phase. 
 
At the end of its first year, the DARPA HPCS program both down-selected to three 
prime contractors and refocused its analysis and performance assessment team.  
Looking towards the second phase of HPCS, there were two major concerns.  The first 
was to quantify the relative difficulty of developing Defense HPC software using 
different programming models and tools (i.e., development time).  The second was to 
quantify the performance delivered by large-scale systems to specific Defense 
applications (i.e., execution time). 
 
In order to support DARPA during the transition to the second phase of the HPCS 
program, the team was tasked to design for DARPA specific research projects whose 
goal would be to address DARPA’s needs regarding metrics and methodologies for 
quantifying development time and execution time productivity.  The team reacted to 
this charge by developing the HPCS execution time strategy in coordination with 
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researchers at Lawrence Livermore National Laboratory (LLNL) and the University of 
California at San Diego (UCSD).  Researchers were engaged at the University of 
Maryland (UMD) and other leading academic institutions to not only develop a 
development time strategy, but to even conduct pioneering experiments to measure the 
productivity of software developers when confronted with various parallel 
programming methodologies. 
 
The outcome of this project was a new understanding of the various components of the 
productivity of Defense HPC systems together with a methodology for measuring 
productivity from both the perspective of application developers as well as users of 
HPC systems.  Along the way, a new set of HPCS benchmarks was developed, 
including a set of discrete mathematics kernels (see Table 2) released by the team.  
Finally, by engaging many of the leaders of the US HPC community, the team helped 
DARPA facilitate a broad consensus, maximizing the impact of its HPCS program. 
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2. Introduction 
 
The Defense High Performance Computing community has long had a need for 
productivity metrics and methodologies for its computing systems.  Unfortunately, 
there are no widely accepted standards for measuring even the performance of HPC 
systems (other then the discredited Linpack benchmark) much less their productivity 
when applied to the unique computational challenges facing Defense scientists and 
engineers as well as operational users.  In coordination with MITRE and Lincoln 
Laboratory, the University of Southern California’s Information Sciences Institute 
undertook an effort to address the lack of HPC productivity metrics and methodology 
as part of DARPA’s HPCS program. 
 
ISI’s initial role in the HPCS program was to develop, in close coordination with 
DARPA and the broader Defense computing community, an understanding of what the 
needs of the Defense computing community are and to establish consensus within the 
HPCS community as to what productivity is.  The result of the first phase of the HPCS 
Analysis project were briefed to DARPA and at HPCS PI meetings and helped define 
the goals of DARPA’s HPCS phase two productivity team. 
 
At the end of its first year, the DARPA HPCS program down-selected to three prime 
contractors and refocused its analysis and performance assessment team.  Looking 
towards the second phase of HPCS, there were two major concerns.  The first was to 
quantify the relative difficulty of developing Defense HPC software using different 
programming models and tools (i.e., development time).  The second was to quantify 
the performance delivered by large-scale systems to specific Defense applications (i.e., 
execution time).  Our team responded by initiating the HPCS phase two development 
time and execution time productivity projects. 
 
The remainder of this final report describes how our team accomplished their goals, and 
is organized as follows.  ISI’s role the first phase of HPCS was primarily one of 
coordination and leadership.  Thus this report is more of a history than a recitation of 
technical results.  The initial project is discussed in Section 3, with the formation of the 
HPCS Analysis team presented in Section 3.1 and with the development of HPCS 
metrics and methodology described in Section 3.2.  The supplementary effort is 
discussed in Section 4, with benchmarking addressed in Section 4.1, the HPCS web site 
in Section 4.2, development time activities presented in Section 4.3 and execution time 
planning described in Section 4.4.  The HPCS project is ongoing, and our team’s 
activities in support of phase two are briefly outlined in Section 5.  A list of 
publications is contained in Section 6.  The personnel involved in the HPCS Analysis 
project are named in Section 7.  This is followed by results, conclusions, and 
technology transfer in Section 8.  Inventions and patent disclosures, or rather the lack 
thereof, is discussed in Section 9. References are provided in Section 10.  Section 11 
contains a list of acronyms, and finally, Section 12 contains the appendices. 
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3. Initial HPCS Analysis Effort 
 
The initial objective of the HPCS Analysis project was to determine the needs of the 
Defense HPC users, the state-of-the-art of the field of HPC benchmarking and establish 
a better consensus in the HPC community as to how productivity and value should be 
defined.  This was to be accomplished by organizing a team of experts from both 
academe and industry. The next two sections describe how the HPCS Analysis team 
was organized and what it accomplished.  The authors used presentations to the 
government, workshops, conference presentations, and other means to disseminate the 
results to the Defense HPC community.   
 
3.1 Forming the HPCS Analysis Team 
 
ISI was initially asked to participate in the HPCS program to complement an effort that 
Dr. Richard Games of MITRE was heading to represent the needs of the Defense HPC 
community to the original five HPCS system vendors.  MITRE has its own expertise in 
areas such as reconnaissance.  However, because of both the diversity of its mission as 
well as security restrictions, no one person or organization can be familiar with the full 
range of Defense needs.  Therefore, ISI was added to the initial HPCS productivity 
team both to bring its own expertise to bear as well as to reach out to others in industry 
and academe where necessary.  The subcontractors were chosen so as to complement 
the skills of ISI and MITRE as well as to give voice to those parts of the Defense 
community that under normal circumstances prefer to maintain their anonymity. 
 
Many components of the Defense HPC community, and its colleagues in other 
government agencies, operate with full public scrutiny, and are able to voice their needs 
openly.  For example, the Defense High Performance Computing Modernization 
Program (HPCMP), while it does support classified computing, is primarily an 
unclassified activity providing HPC infrastructure to support open research performed 
in academe and at Defense laboratories.  Therefore, HPCMP could forthrightly 
represent its needs and those of its user’s to the HPCS program and its vendors.  The 
DOE’s Office of Science performs only unclassified research, so it too could represent 
its own needs in public forums.  Both HPCMP and DOE SC were (and continue to be) 
overt and active HPCS “mission partners”. 
 
There are also HPCS mission partners whose work is classified, and who are thus 
unable to directly represent their computational requirements.  Our team took this into 
account and included investigators with appropriate access to visit these sensitive 
organizations.  These included Dr. Barbara Yoon as well as SGI and the Northrup-
Grumman Corporation (NGC).  We were thus able to include in our findings the 
requirements of the classified Defense community as well as the open, scientific and 
engineering community. 
 
The user communities discussed above tend to develop their own codes.  However, 
most HPC users, whether in the Defense community, or outside of it, use codes 
developed by others.  Most such codes come from government labs or independent 
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software vendors (ISVs), and no study of Defense HPC requirements would be 
complete without them.  Furthermore, there has been an absence of a measure of the 
throughput of critical full-scale applications in the last decade.  Therefore, ISI 
contracted with Professor David Benson of the University of California at San Diego 
(UCSD) to develop a benchmark that measures the performance delivered to Defense 
users by real a code.  UCSD focused its efforts on the LS-DYNA2 code, which is the 
principle computational bottleneck in the automotive mechanical computer-aided 
engineering (MCAE) field.  This code originated at LLNL and has many properties 
similar to those of full-scale Defense applications. 
 
In the first quarter of the HPCS Analysis project, much of ISI’s activity was directed 
toward organizing the above team.  Once the core team had been identified and brought 
under contract, the real work of determining metrics and methodologies for defining the 
productivity of HPCS systems could begin. 
 
3.2 Developing HPCS Productivity Metrics and Methodology 
 
An early goal of the HPCS program was to ascertain Defense HPC requirements so as 
to be able to represent them to the HPCS vendors, none of whom support the full range 
of Defense users.  Visits were made to NSA and other intelligence agencies, DOE, and 
LLNL.  The latter were to discuss the needs of the nuclear weapons community.  
Topics of discussion included both computing requirements as well as software 
development practices. 
 
Initial results regarding software development practices and methodologies were 
presented at the HPCS PI meeting in Phoenix, AZ, in the last week of October, 2002. 
The PI reported on software development practices at the NSA and DOE National 
Nuclear Security Administration (NNSA) Labs.  Commercial MCAE ISVs were 
included for contrast.  The center-piece of this report is the data shown in Table 1, 
which depicts the six main nuclear weapon performance codes initiated by the NNSA, 
along with an older, legacy code.  The size of the codes, the average number of 
programmers employed, the length of time the codes had been under development, and 
a measure of their success are all provided.  An important point is that NNSA multi-
physics codes contain hundreds of thousands of lines of code, are built by a dozen or 
more scientists and engineers, and evolve over a period of many years.  Note, in spite of 
this investment, they are not all successful.  Once these codes reach a level of maturity, 
they are often run for months on end, and the biggest constraint on NNSA’s scientific 
productivity tends to be their execution time.  Because such codes are often used for 
decades, the developers have to use very conservative languages and programming 
models.  Often they are limited to Fortran, C, and MPI. 
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 LLNL LANL 

Code Projects 
ASCI 

A ASCI B
Legacy 

A 

Antero 
Code 

Project

Shavano 
Code 

Project

Crestone 
Code 

Project 

Blanca 
Code 

Project 
Single Lines of Code 184000 640000 410550 300000 500000 314000 200000
Function Points (Eq. 1) 4800 6100 5400 2900 4800 2900 3774 
Estimated schedule(Eq.4) 8.7 9.0 6.9 6.6 8.1 6.7 7.4 
Project age (at initial 
milestone due date) 3 9 N/A 4 3.5 8 8 
Successful in achieving 
initial ASCI Milestone No Yes N/A No No Yes No 
Estimated staff 
requirements (Eq.3) 22 27 24 14 22 14 18 
real team size (1997-2002) 20 22 8 17 8 12 35 
 

Table 1: Software Resource Estimates for the LLNL and LANL ASCI projects 
(data from Dr. Douglass Post, Los Alamos National Laboratory) 

 
NSA has application code teams of comparable size in terms of source code, people, 
and duration.  However, it also has a very different application development paradigm.  
Often one person, working under tremendous time pressure, will develop a body of 
code to perform what is best referred to as a mathematical experiment.  Many times the 
code is used only once, leading such programs to be called “Kleenex codes”.  In this 
latter, “lone researcher” mode of software development, the time to develop the code 
can be the biggest constraint on overall productivity.  The need to maximize 
programmer productivity, together with the short life span of the Kleenex codes, allows 
NSA developers to be early adopters of languages such as Unified Parallel C (UPC). 
 
While MCAE companies often employ hundreds of people, the core development 
teams tend to on the order of one to two dozen.  Often, as with the NNSA and NSA 
codes, there are one or two “heroes” who propel the overall team.  Like the NNSA code 
developers, MCAE programmers have to use conservative programming models that 
run on a wide variety of platforms and can be expected to be supported many years in 
the future.  Thus, they tend to use Fortran and the Message Passing Interface (MPI).  
Some of the newer codes are written with C++. 
 
Another result of the early HPCS work was the development of a set of benchmarks 
representing the Defense HPC computing workload with which the program could both 
motivate its vendors and measure their progress.  ISI collaborated with MITRE’s Dr. 
David Koester on this effort.  Together, ISI and MITRE developed a strategy of mixing 
traditional computational-kernel benchmarks with full applications.  The kernel 
benchmarks were to be a spanning set of small codes that measured specific aspects of 
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a computing system’s performance.  There would also be a modest set of full 
applications enabling vendors to study complete codes, including input and output 
characteristics.  The HPCS benchmarking strategy evolved over the course of the 
project.  Therefore, discussion of a later strategy is included in Section 4.1. 
 
Table 2 contains the benchmarks that were chosen for HPCS in phase one.  ISI and 
MITRE chose the kernel benchmarks to represent computations that are critical to 
Defense, and often unique to it.  One and two-dimensional Fast Fourier Transforms 
(FFT) were chosen to represent reconnaissance.  Linear solvers were chosen to 
represent science and engineering.  A set of discrete mathematics codes used in 
Defense procurements was chosen to represent a large part of the classified Defense 
workload.  Finally, a set of novel, graph analysis benchmarks was proposed to represent 
the increasingly important Defense data analysis problem. 
 
The first category of HPCS kernel benchmarks was one and two-dimensional FFTs.  
The FFTW benchmark from MIT was chosen as it is widely known to the embedded 
Defense HPC community.  A two-dimensional FFT code written by MITRE’s Brian 
Sroka was also included, to represent higher dimensional FFTs that also occur in the 
workloads of the mission partners. 
 
The second category of HPCS kernel benchmarks was linear solvers.  The obvious 
choice for a dense matrix solver is High Performance Linpack (HPL), which is widely 
used throughout the HPCS community.  As a benchmark for sparse solvers, the well 
known conjugate gradient code from the National Aeronautics and Space 
Administration’s (NASA) Advanced Supercomputing Division’s (NAS) Parallel  
Benchmarks (NPB) was chosen. 
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Benchmarks 
 

Application Area Benchmark Type Name Source Additional Information
     

Signals 1D FFT FFTW Available on Web   
     

Remote Sensing 2D FFT RT_2DFFT Available from MITRE Brian Sroka 
     

Stockpile Stewardship Radiation Transport UMT2000 ASCI Purple  LLNL Radiation Transport 

  Unstructured Grids       
          
  Eulerian Hydrocode SAGE3D ASCI Purple  LANL Eulerian  Physics. 

  Adaptive Mesh     SAIC IP 
          
  Finite Difference Model CTH DoD HPCMP TI-03 SNL Engineering  Physics 

        Export Controlled 
          
 
Ocean Forecasting Finite Difference Model NLOM DoD HPCMP TI-03   
          
Army Future Combat 
Weapons Systems Finite Difference Model CTH DoD HPCMP TI-03 Export Controlled 
          
Biological TBD TBD TBD   
          

Crashworthiness   
Multi-physics Nonlinear 
Finite Element  LS-DYNA Available to Vendors Commercially Available 

          

Linear Algebra 
Lower / Upper Triangular 
Matrix Decomposition LINPACK Available on Web Time to solution = 72 hours 

  Conjugate Gradient   NAS CG C DoD HPCMP TI-03 
Solve Laplace's  equation 
on a cubic grid 

          

Discrete Math 
Global Updates per second 
(GUP/S) RandomAccess Paper & Pencil  Contact Bob Lucas (ISI)  

  Multiple Precision  none Paper & Pencil  Contact Bob Lucas (ISI)  

  Dynamic Programming none Paper & Pencil  Contact Bob Lucas (ISI) 

  
Matrix Transpose 
[Binary manipulation] none Paper & Pencil Contact Bob Lucas (ISI)  

  
Integer Sort  
[With large multiword key] none Paper & Pencil Contact Bob Lucas (ISI)  

  Binary Equation Solution none Paper & Pencil  Contact Bob Lucas (ISI)  
         

Graphs 
Graph Extraction 
(Breadth First) Search none Paper & Pencil    

  Sort a large set  none Paper & Pencil    

  
Construct a Relationship 
Graph Based on Proximity none Paper & Pencil   

  
Table 2: HPCS Phase One Benchmarks 
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The discrete mathematics benchmarks are codes used by the intelligence community, 
which were released to the HPCS program after DARPA and its contractors agreed to 
obscure their source.  They were released to the HPCS community as a set of six 
discrete mathematics benchmarks.  These codes stress a system’s ability to randomly 
access large memories, and to compute on unusual operands ranging from single-bit 
integers to very large, multi-precise integers.  The most widely known of these codes is 
RandomAccess, which randomly updates a very large array in memory, exposing the 
main memory latency of modern microprocessors.  The second benchmark measures 
performance when multiplying multi-precise integer numbers.  The third is a dynamic 
programming kernel, which incorporates a comparison inside of a sparse matrix 
multiply kernel.  The fourth transposes the bits in a GF(2) matrix, and is designed to 
reward vendors who have bit-matrix-multiply (BMM) function units.  The fifth 
benchmark is an integer sort.  The final benchmark is the solution by Gaussian 
elimination of a dense linear system over GF(2), again rewarding vendors who have 
BMM instructions. 
 
The final category of HPCS kernel benchmarks was graph analysis.  These kernels 
were designed to represent a class of problems of increasing importance to the 
intelligence community.  Three kernels were proposed: graph construction; sorting of 
large sets; and clustering.  At the end of the first phase of the HPCS Analysis project, 
these only existed as pencil and paper specifications. 
 
The choice of full application codes with which to represent the Defense workload was 
also done as a collaboration with MITRE.  MITRE surveyed the unclassified mission 
partners and suggested the Navy’s NLOM ocean-modeling code together with 
something to represent Biology.  Meanwhile we worked with the NNSA labs.  NNSA 
politics required that each of LANL, LLNL, and Sandia National Laboratory (SNL) be 
explicitly represented.  We also insisted the codes selected be truly representative of the 
workloads in the labs and not be selected to make statements with respect to the 
performance NNSA achieves.  In the end, the following choices were made.  
UMT20003 was chosen as it was developed at LLNL and models a radiation transport 
code.  SAGE4 was selected as it is an Eulerian hydrodynamics code from LANL.  CTH5 
was selected as not only because it is a shock physics code from SNL, but because it’s 
also the most highly utilized code at the Army Research Laboratory’s Aberdeen 
Proving Grounds, where engineers are designing the Future Combat System. 
 
The above work focused on applications for which the Defense community, either the 
government itself, or its contractors, develop their own codes.  However, much of the 
government’s workload consists of running commercial codes developed by 
independent software vendors (ISVs).  Historically, the most important unclassified 
user community was mechanical computer aided engineering (MCAE), the principle 
code was NASTRAN6, and the Linpack benchmark was a good proxy for it.  
Unfortunately, as a new generation of distributed memory computers emerged, the 
Linpack benchmark evolved away from the MCAE codes, and performance measured 
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by the benchmark no longer reflected that provided to the end users of the MCAE 
codes. 
 
To address this shortfall and create a benchmark that measures the throughput of a real 
code, we proposed adding LS-DYNA, the most important commercial MCAE code in 
terms of usage today, to the HPCS full applications benchmarks.  Going even further, 
we engaged UCSD to create a new Web site at www.topcrunch.org to track 
performance of LS_DYNA on different systems.  TopCrunch was modeled on the 
TOP500 web site (www.top500.org) that tracks performance on the Linpack 
benchmark.  Like TOP500, UCSD’s plan was to pose a problem, allow computer 
vendors to have their MCAE marketing engineers optimize and run the LS-DYNA 
code, and then for UCSD to collect and publish the results.  Two problems were posted, 
and results have been collected and posted from a variety of MCAE users as well as 
computer vendors.  Further details of this work can be found in Appendix C, which 
contains a brief report from UCSD. 
 
One of the reasons the Linpack benchmark gained a life of its own, independent of any 
relationship to mainstream applications, was that it was used by both computer vendors 
and users for bragging rights.  This meant that over the last decade, these people 
invested tremendous effort to port the code and optimize it.  The TOP500 Web site 
merely has to establish the rules and publish the results.  This too is a goal of the 
TopCrunch benchmark, to stimulate enough interest that it becomes self-sustaining and 
outlives the HPCS program. 
 
In order to represent the needs of a broader set of the intelligence community our team 
studied the data flows and algorithms used in specific intelligence systems.  Further we 
developed a characterization table for future systems based on: process type, products, 
functions, data size, and throughput.  This work culminated in a series of one-day 
workshops that were held for each of the HPCS vendor teams.  These workshops were 
classified, and no information will be conveyed in this report. 
 
Our team member NGC examined how to represent intelligence processing 
requirements to the HPCS vendors.  They reported that such codes are typically written 
in C or C++ by teams of up to fifteen people and have a lifetime of up to twenty years.  
An abstract algorithm that could be representative of this class of computation is set 
partitioning under constraints including non-linear least squares.  Northrup-Grumman 
outlined a benchmark that would implement this algorithm.  The proposed benchmark 
is discussed in further detailed in Appendix H, a report by NGC. 
 
Developers of embedded HPC systems are increasingly considering tiled architectures, 
in which a relatively simple processing component is replicated many times in an array.  
While such systems provide very high compute density, their system architecture is 
unusual and thus their programmability is open to question.  Researchers at ISI in 
Arlington, VA, studied the question of mapping a common algorithm, an FFT, onto an 
example of such a tiled array, the MIT RAW7 system.  They reported that the Static 
Communication API was able to profile the communication activity in the algorithm 
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and automatically determine a static routing pattern.  This work suggested that tiled 
arrays may offer reasonable levels of programmer productivity for Defense systems.  
Appendix B provides further detail of this work. 
 
Productivity is the ultimate theme of the HPCS program.  Each of the HPCS vendor 
teams was expected to develop its own definition of productivity and share it with the 
HPCS community.  The goal was to develop a consensus within the Defense HPC 
community.  In the end, all vendor teams produced formulas for productivity as the 
ratio of utility divided by cost.  Utility is a complex function of the timeliness of results.  
Cost is the total cost of ownership, including the labor to develop codes, the purchase 
price of the system itself, and the cost of maintaining the system for over its operation 
lifetime.  A special issue of the International Journal of High Performance Computing 
Applications (Volume 18, Number 4, Winter 2004) was published in November 2004 
containing papers generated by HPCS program investigators and edited by Lincoln 
Lab’s Dr. Jeremy Kepner. 
 
Our role in defining productivity was to help facilitate the process.  Towards that end, 
we organized a workshop in Santa Monica, CA in January of 2004.  Appendix A 
contains the agenda for the January 2004 HPCS Productivity Workshop.  
 
4. HPCS Supplementary Effort 
 
To help facilitate the transition of the HPCS program from phase one to phase two, the 
project was extended so we could continue to collaborate with MITRE on the HPCS 
benchmarking activity and to create a Web site for the HPCS community.  However, 
the focus of the second phase of the HPCS Analysis effort was on planning and 
initiating two projects whose goals would be to develop methodologies for quantifying 
the productivity of future HPCS systems.  This work was partitioned into two subsets, 
development time to reflect the human cost of writing HPC code, and execution time to 
reflect the throughput of the codes on HPC systems.  The bulk of the effort was directed 
at development time as there is no prior art or related work being pursued elsewhere.  
Each of the four foci of the supplementary project is addressed in turn below. 
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4.1 Benchmarking 
 
ISI continued its successful collaboration with MITRE to organize the HPCS 
benchmark set.  A revised four-tiered HPCS benchmark strategy was developed, as 
depicted in Figure 1.  On the left are the HPCchallenge benchmarks 
(www.hpcchallenge.org).  The overall Petascale performance goals of the HPCS 
program correlate to the throughput measured by the High Performance Linpack 
(HPL), parallel RandomAccess, and PTRANS kernels of HPCchallenge.  The next box 
to the right represents the HPCS kernel benchmarks, largely unchanged from the first 
phase of HPCS.  Continuing to the right, the next box represents a new set of scalable 
synthetic compact applications (SSCA).  These are intended to provide HPCS scientists 
and engineers with model applications that are of a scale that they can be easily 
reimplemented in different programming languages, and for a variety of systems, 
enabling the community to measure the impact of these technologies on productivity.  
Finally, the rightmost ovals depict the representative mission partner applications.  At 
the end of the HPCS Analysis project, HPCchallenge was up and running, MITRE was 
distributing the kernel benchmarks and mission partner applications, and Lincoln Labs 
was developing the scalable synthetic compact applications. 
 

 
Figure 1: The four-tiered HPCS benchmarking hierarchy. 

 
The HPCchallenge was created to augment the famous High Performance Linpack 
benchmark used in the TOP500 with kernels exhibiting more challenging memory 
access patterns.  The HPCchallenge benchmark is managed by the Univerisity of 
Tennessee at Knoxville (UTK) via the web site www.hpcchallenge.org.  Both source 
code for the benchmark and results can be found at the web site.  One of the 
HPCchallenge codes, RandomAccess, is derived from the HPCS discrete math 
benchmarks that we released, and thus we have the role of maintaining this code.  We 
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also continue to maintain and distribute the other HPCS discrete math benchmarks as 
needed. 
 
The kernel benchmarks remain largely unchanged from the first phase of HPCS.  They 
were augmented with the addition of the STREAMS benchmarks and the other 
components of the HPCchallenge benchmark.  In addition, it was proposed that a new 
set of I/O benchmarks be developed to better represent the needs of the intelligence 
community to work with both very large data sets in secondary storage as well as high-
speed streams of raw data from sensor platforms. 
 
The scalable synthetic compact applications were designed to provide HPCS scientists 
with model applications that were more complicated than the kernel benchmarks, yet 
could still be reimplemented in different programming languages.  Six such 
benchmarks were proposed.  The first three SSCAs were selected to be related to 
otherwise classified Defense problems.  One would encompass the graph analysis 
kernels, a second would involve pattern matching, and a third signal processing.  Three 
additional simulation SSCAs were also proposed.  They would be representative of 
applications in chemistry, adaptive mesh refinement, and multi-physics codes.  At the 
end of the HPCS Analysis project, the graph analysis SSCA and been specified, and 
Lincoln Labs had begun implementing it.  Development and release of the rest of them 
was deferred until later in HPCS phase two. 
 
SUN, one of the three HPCS phase two system vendors also proposed a set of so called 
purpose-based benchmarks.  These are similar in scale to the SSCAs.  However, they 
differ in that rather than specifying an abstract mathematical problem, they instead pose 
a representative problem from an application domain, leaving the solution technique 
entirely up to the programmer.  At the end of the HPCS Analysis project, SUN had 
proposed nearly ten such purpose benchmarks, and had made significant progress on 
the first, taken from the mechanical engineering domain. 
 
The choice of representative HPCS mission partner codes was revisited during the 
supplementary phase of the HPCS Analysis project.  The SAGE code was dropped 
because it turns out to have components that are proprietary to the Science Applications 
International Corporation (SAIC).  Furthermore, it became necessary to include codes 
sponsored by a number of mission partners including DOE SC, NSF, and NASA.  ISI 
and MITRE insisted that the codes span a wide application space, as defined by the 
HPCMP’s computational technology areas (CTA).  Finally, source code had to be 
available and there could be no restrictions on access to the code by foreign nationals. 
 
Table 3 contains the set of representative mission partner applications as of the end of 
the HPCS Analysis project.  UMT2000  and CTH were carried over from the first set of 
applications.  OVERFLOW-D is a computational fluid dynamics (CFD) code 
developed by NASA and used by the Army to study rotorcraft.  GAMESS and 
NWChem are computational chemistry codes.  ALEGRA is another Sandia shock 
physics code, whose presence in this collection was requested by NNSA.  LBMHD and 
GTC are magnetic confinement fusion codes.  HYCOM is a new Navy ocean modeling 
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code.  Finally, the Community Climate System Model (CCSM) is the World standard 
code for modeling long-range climate change.  Note that this set not only covers a wide 
range of computational disciplines, but it also was chosen such that each mission 
partner was explicitly represented by a code it invests in. 
 

 
 

Table 3: HPCS Mission Partner representative applications 
 
UCSD also continued to maintain and enhance the TopCrunch, full application 
benchmark and web site.  In the course of this work, UCSD invented a strategy for 
making arbitrarily large models by creating chain-reaction car crashes, allowing the 
benchmark to scale to arbitrarily large problems in the future.  A Web site such as 
TopCrunch can only be successful long term if the computer vendors compete to 
perform the best.  The TopCrunch Web site is well on its way to providing a full 
application alternative to the TOP500.  Again, additional details are provided in 
Appendix C, which contains a report from UCSD. 
 
Ohio State University (OSU) prototyped an environment for automatically specifying 
and executing a set of benchmarks. This is needed for the second phase of HPCS, 
where users are expected to want to run a wide variety of HPCS benchmarks, 
implemented in different programming languages, and a variety of platforms.  The 
number of alternatives is such that automation of this process is necessary lest the 
productivity of HPCS researchers suffer. 
 
4.2 HPCS Community Web Site 
 
ISI developed a web site to allow for the dissemination of information and the easy 
exchange of data.  The address for the site is www.highproducivity.org.  It contains 
publicly available information such as an introduction to the HPCS program, meeting 
announcements, and a list of participants.  There is also a password protected area 
which enables HPCS working groups to share documents.  There are email aliases to 
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facilitate communication amongst the members of the productivity team.  Finally, there 
is a link to the HPCchallenge benchmarks which are maintained on the University of 
Tennessee’s web site, www.hpcchallenge.org.  After prototyping the site for the HPCS 
program, We turned it over to the Georgia Institute of Technology for long-term 
maintenance.  The ultimate goal for this web site is that it will outlive the HPCS 
program and become an enduring resource for the Defense HPC community. 
 
4.3 Development Time 
 
The HPCS phase two development time project aims at the analysis of HPC 
technologies to evaluate them with respect to development-time tradeoffs as well as the 
analysis of HPC technologies to understand them with respect to common software 
development. In order to achieve these goals HPCS researchers must characterize and 
understand individual HPC technologies with respect to attributes such as ease of use, 
ease of learning, and types of defects, for a particular set of context variables.  Different 
metrics and models exist for measuring and predicting execution time under various 
conditions. However, little empirical study has been done on the human effort required 
to implement those solutions. As a result, many development decisions about language 
and approach are made based on anecdote, “rules of thumb,” or personal preference. 
Without empirical data, governmental organizations cannot take into account the effects 
that an HPC system will have on the development time of Defense applications. Such 
data is necessary to help guide decision-making when purchasing the next generation of 
HPC systems.  Therefore, UMD set out to initiate an empirical study of HPC software 
development for the second phase of the HPCS program. 
 
Understanding a discipline involves generating hypotheses, building models (e.g. 
application domain, workflows, problem solving processes), checking whether the 
understanding is correct (e.g. testing the models and experimenting in the real world), 
and finally analyzing the results to learn, encapsulate knowledge, refine models and 
evolve hypotheses. The first step towards understanding a discipline is the definition of 
various variables and factors involved.  In the context of HPCS development time, three 
main types of variables can be recognized: controlled independent variables; non-
controlled independent variables; and dependent variables.  Controlled independent 
variables are factors whose effects are to be studied and manipulated in an experiment. 
Examples of these variables are problem type (e.g., embarrassingly parallel or nearest-
neighbor), problem domain (e.g., weather simulation or image processing), program 
size (e.g., kernel or compact application), hardware (e.g., cluster), programming model 
(e.g., message passing or shared memory), implementation of programming model 
(e.g., MPI), base programming language (e.g., C, Fortran or Matlab), access to existing 
serial implementation and software development process.  Non-controlled independent 
variables are factors which the experimenter cannot usually control but may have an 
effect on dependent variables. For HPC, these context variables are usually human 
attributes such as experience, knowledge of problem domain, educational major (e.g., 
physics, computer science, engineering, or math), relevant courses taken, motivation 
and inherent programming ability.  Dependent variables are factors which are supposed 
to be explained by changes in independent variables. Variables such as execution time, 
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speedup relative to serial implementation, development time (total or breakdown by 
activity) and source lines of code (SLOC) are dependent. 
 
The development time effort’s plan is to conduct human subject software development 
experiments in three different contexts.  The first is the classroom, which affords 
inexpensive access to a large number of subjects, and was the focus of almost all of the 
effort in this initial phase.  The second is an industrial context, involving software 
development professionals.  The third is an observational study, in which one analyses 
the data collection tools.  UMD was also able to begin analyzing some of the 
preliminary data collected in pilot classroom experiments. 
 
Classroom Studies 
Classroom studies are thought to be representative of a subset of the Defense HPC 
software development environment similar to that of the “lone researcher”. The results 
obtained from these studies could be generalized for scientists who need to do HPC 
programming, but do not have HPC experience. Through classroom studies we are able 
to measure ease-of-learning, provide evidence for or against “tribal lore”, and relate the 
results to the kernels developed by the Benchmarking Working Group. Other 
advantages of classroom studies are running experiments with more subjects, less cost, 
and faster results.   Classroom studies also allow researchers to analyze the effects of 
variables which may be impossible to control on a larger project, identify potentially 
statistically significant relationships among a large number of variables, and debug the 
experimental protocol before applying it to more expensive studies involving 
professionals. 
 
Pilot classroom studies to test and validate the classroom methodology were conducted 
by Jeff Hollingsworth at UMD, Alan Edelman at the Massachusetts Institute of 
Technology (MIT), John Gilbert at the University of California at Santa Barbara 
(UCSB), Allan Snavely at UCSD, and Mary Hall at the University of Southern 
California (USC).  The San Diego Supercomputing Center (SDSC) provided a 
computing platform and the UMD provided an exemplar experimental software suite as 
well as guidance on the experimental procedures to the investigators. UMD also helped 
each of the classroom instructors work through their respective institution’s procedures 
for authorizing research involving human subjects (i.e., the students).   Table 1 contains 
the classroom study schedule. 

 

 
Table 4: HPCS Classroom studies schedule 

 

Study Period Location Status 

Pre-Pilot Study Fall 2003 University of Maryland Completed –Analyzed  

Pilot Studies Spring 2004 MIT, USC, UCSB, UMD Completed –Under 
analysis 

Pilot Study Fall 2004 UCSD TBD 
Full Study Spring 2005 TBD TBD 
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The classroom studies were run in 6 classes, 13 assignments were given and data from 
100 subjects was captured, 71 background questionnaires, 41 post-test questionnaires 
and about 500 effort-log entries were collected. Nearly 1,500 hours of effort was 
reported, 26,000 time-stamped source files with activity, 2,600,000 lines of code 
(multiple versions of each file) and 16,000 time-stamped execution runs were captured. 
 
Through these classroom pilot-studies, good collaboration with all professors involved 
was established, software engineering empiricists at UMD learned about the HPCS 
program, and HPC professors learned about human-subjects experimentation.   A rich 
set of hypotheses was generated, a web-based experience base was created, automatic 
data collection mechanisms were established, and good initial data on variables such as 
source code, different development activities, and the time spent during each of these 
activities was captured. 
 
Valuable lessons were learned about HPC infrastructure and both automated and 
manual data collection.  Technical difficulties are common on HPC machines and it is 
not always possible to re-run the code on the same machine later on.  The data 
collection process is affected by students’ access to un-instrumented machines and 
frequent questions on instrumented machines may result in inaccurate answers.  
Furthermore, the experimentalists must set up data collection mechanisms, otherwise 
important data may not be collected.  Reported effort logs are unreliable and the best 
way to get subjects to complete questionnaires is to be in the room as they fill them out. 
 
Additional details about UMD’s pioneering work in empirical studies of HPC software 
development can be found in Appendix D.  Reports from UCSD, UCSB, and MIT 
regarding their development time classroom experiments can be found in Appendices 
E, F, and G. 
  
Industrial Studies 
The first industrial case study was the implementation of the Graph Analysis executable 
specification, an HPCS scalable synthetic compact application drafted at Lincoln Labs.  
The goal is to develop a compact application that has multiple kernels accessing a 
single data structure representing a directed multi-graph, with weighted edges. The 
problem includes the implementation of four computational kernels: Graph 
Construction, Sort on Large Sets, Graph Extraction and Graph Clustering. At the end of 
the HPCS Analysis project, this activity was not yet complete.  It will be completed as 
part of the Lincoln Labs and UMD HPCS phase two efforts.  Additional industrial 
HPCS development time experiments are also being planned. 
 
Observational Studies 
Finally, in order to evaluate development time experimentation mechanisms and tools, 
and compare the results obtained from various mechanisms, UMD designed controlled 
observational studies. In these studies one observes the developer throughout the 
software development process and collects the development data in several ways.  By 
comparing the results one can evaluate the effectiveness of data collecting methods 
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such as manual data collection, Eclipse8, Hackystat9 and other instrumentation 
mechanisms.  This work will be conducted later in HPCS phase two. 
 
Data Analysis 
Analysis of collected data from pilot classroom studies is underway. Although the data 
is not yet validated, a rich set of hypotheses has emerged from HPCS course professors’ 
observations, the data, and experts in HPC community. Rather than creating new 
hypotheses and evaluating them, UMD collected “Tribal Lore” from the HPC 
community and tried to evaluate its validity by using the experimental data.  Three 
examples are given below: 
 
The following hypothesis was suggested by Mary Hall (instructor of USC595 pilot 
study): Performance tuning of uniprocessor code (optimizing for cache and registers) 
takes a substantial fraction of the overall tuning effort. 
 

 
Figure 2: Effort percentage spent on each activity (USC595) 

 
Figure 2 represents the effort students spent on various activities for the study USC595.  
As seen in the figure, the collected data approves the hypothesis. 
 
Another hypothesis, common to HPC practitioners is: The variation in the speedup of 
MPI codes will increase with the number of processors 
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Figure 3: Evidence for hypothesis2 from pilot study CMSC818S 

 
Figure 3 represents the range of parallel speedup observed in data from the CMSC818S 
class.  As seen in the figure, the collected data again approves the hypothesis. 
 
The following hypothesis emerged from collected data:  There is a difference between 
people who develop their code at a steady pace and those who “panic” at the deadline 
in terms of: code size, total effort, code performance, and defects.  Figure 4 represents 
the data that this hypothesis emerged from.  Notice that the cumulative effort for the 
student who worked at a steady pace was less than half that of the student who 
“panicked” and finished the project the night before it was due. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Steady Development (left) versus Panic (right) 
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4.4 Execution Time 
 
The HPCS phase two execution time plan was developed by ISI in coordination with 
LLNL and UCSD.  An overview is presented below. Due to the fact that related 
performance work was ongoing in the broader HPC community, yet there was no 
analog to the development time effort, DARPA chose to defer initiation of the 
execution time plan until FY04 funding from a mission partner, DOE SC, became 
available.  Thus only a plan, but no early results are presented here. 
 
The HPCS execution time research project was designed to deliver improved 
understanding of architectural factors affecting application execution time on 2010, 
Petascale systems.  The initial goal is to establish a baseline by understanding the 
critical performance features on existing cutting-edge systems, such as the Cray X110, 
then move to near-term future systems, such as Red Storm and BlueGene/L11, as they 
arrive.  We then plan to develop tools for creating models of future applications by 
scaling from contemporary problems.  The execution time of these model Petascale 
applications would then be estimated by running them on simulators for future 
machines with new architectural features. To facilitate these studies we propose 
developing a Common Modeling API allowing for graceful connection to other HPCS 
measurement, modeling, and simulation tools. Finally, we plan to work closely with the 
HPCS program’s MITRE team on representative Defense codes and compact 
applications to ensure we model representatives from different dimensions of the HPCS 
application space. 
 
The execution time plan is structured around five primary thrusts: 
 

1. Study application execution on existing systems to identify critical performance 
features. 

2. Develop scaling models of applications to predict future machine requirements. 

3. Develop a scalable system modeling capability for estimating application 
performance given key system parameters of future architectures. 

4. Connect tools for measurement, modeling, and simulation with a common 
modeling API. 

5. Predict end-user productivity when developing and executing full-scale 
applications. 

The foundation on which all of the rest of this system builds will be a set of 
performance tools that use both static analysis of source code and traces of run-time 
behavior to extract detailed information about how and why an application performs as 
it does on a particular computing system.  We will integrate the outputs of a variety of 
tools, both those we are developing as part of our existing research as well as research 
and commercial tools such as Tau12 and Vampir13 which are familiar to us.  Our static 
analysis will allow us to generate performance assertions to identify potential 
performance bottlenecks and focus our analysis. Our trace tools will determine 
specifically what the bottlenecks are.  We will be able to quantify performance for 
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codes today, setting realistic expectations for Petascale systems at the end of the 
decade.   
 
A detailed breakdown of the software methodology for scaling applications and 
modeling their performance on Petascale systems is illustrated in Figure 5.  Each of the 
software modules and interface specifications to be developed are shown explicitly.  
Specific parallel kernels from the HPCS benchmarks will be extracted to provide a test 
suite for the execution evaluation experiments.  Trace tools will allow detailed analysis 
of executing code to establish a directed graph representing the unfolding computation 
and identifying the local computation, memory access patterns, remote request 
messages, and global synchronization such as barriers.  This provides a quantitative 
means of evaluating the key operational properties of the application driven 
computation. The result will be a specification and description of the resulting 
computational workload in terms of concurrency, precedent constraints, and classes of 
operations.  
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Figure 5: Detailed Tool Flow for Application Scaling and System Modeling. 
 
The Petascale HPCS platforms to be considered will be vastly larger than existing 
machines and the workloads to be run on them are anticipated to be many orders of 
magnitude greater than those extracted and characterized from the kernels by the trace 
tool suite. Parameterized scaling models (A1 – A3) will be developed for each 
application kernel. Initially this will be done by hand and is expected to be labor 
intensive. The scaling model will relate the primary characteristics of the workload to a 
set of scaling parameters. An open interface format will be defined and include 
symbolic parameters and symbolic relationships (I1 – I3). The scaling model accepts 
the scaling relationships and transforms the measured values of the trace workload to 
produce a new workload characterization. 
 
We proposed to implement four models of machines to examine different operational 
properties and performance tradeoffs.  The machine models will fall in to different 
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categories depending on the form of workload scaling model used.  An explicit thread 
machine model will accept a description of an abstract machine at scale and the 
representation of the explicit thread scaled workload. It will apply a transformation to 
convert the workload data in to a time domain based representation of the machines 
operational characteristics.  The UCSD Metasim Convolver14 tool will be extended to 
input trace-derived threads and feed them to a discrete event simulation of a computing 
system. A continuum envelope machine model will be developed that takes an input 
workload envelope and creates a time domain output workload. Because some of the 
precedent constraint information will be lost in the envelope representation, this 
machine model will generate two new outputs, one for eager evaluation which will 
produce a lower bound on execution time, and one for lazy evaluation which will 
produce an upper bound on execution time.  The final machine model, the symbolic 
model, will work directly on a symbolic workload representation and keep some of its 
parameters to produce a symbolic representation of the time domain behavior of the 
modeled machine. This will allow symbolic manipulation of the results to compute 
such higher order properties as sensitivities with respect to key parameters. 
 
When successful, the HPCS execution time project will demonstrate for the HPC 
community the ability to extrapolate an existing application’s performance 
characteristics to represent a future workload.  These models will then be studied with 
simulations of future systems to anticipate the execution time performance such 
systems will provide to their users.  They could also be used to define future HPC 
requirements. 
 
5. Ongoing and Future Work 
 
The DARPA HPCS program is ongoing as this report is written, and the productivity 
team that ISI helped create continues to play a vital role.  A critical aspect of this is a 
rich set of benchmarks and applications that was developed to represent the needs of 
Defense science and engineering workload to the HPCS vendors and the broader HPC 
community.  ISI continues to participate in the HPCS benchmarking work, in 
collaboration with MITRE.  The most visible aspect of the HPCS benchmarking effort 
is the HPCchallenge benchmark which augments the TOP500 with code kernels 
exhibiting more challenging memory access patterns.  The HPCchallenge benchmark is 
maintained by University of Tennessee at Knoxville (UTK).  There is also an ongoing 
effort led by OSU to develop a test and specification software infrastructure to facilitate 
benchmarking with a wide variety of kernels, programming models, and systems. 
 
Another productivity team project is underway to learn how to quantify the relative 
costs of different programming models in the development of Defense applications.  
Led by the UMD, an empirical study of programmer productivity is being developed.  
This is being complemented by a study of existing, large-scale scientific and 
engineering code projects.  The existing codes study is being led by LANL’s Dr. 
Douglass Post.  The ultimate goal of these is to provide a quantitative basis by which 
Defense program managers can anticipate HPC software development costs and use 
this information as part of overall system procurement strategies. 
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Just as it’s important to anticipate software development costs, so too is it important to 
be able to anticipate how well future HPC systems will perform, even before the first 
prototypes exist.  This is because the Defense community is usually the pioneering user 
of such systems.  Therefore, an execution time project led by ISI has also been initiated 
to model current Defense applications at the Petascale, study their behavior on models 
of HPCS systems, and enable engineers to reason about architectural tradeoffs. 
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7. Personnel 
 
7.1 ISI Research Staff: 
 

• Dr. Robert Lucas, Principal Investigator 
• Dr. Pedro Diniz 
• Dr. Mary Hall 
• Dr. Jacqueline Chame 
• Mr. Daniel Davis 
• Mr. Spudun Bhatt 
• Dr. Barbara Yoon (consultant) 

 
7.2 Subcontractor Research Staff 

 
• MIT: Alan Edelman 
• NGC: Robert Babb 
• NGC: Mark Coffey 
• OSU:  Ashok Krishnamurthy 
• SGI:  William Harrod 
• UCSB:  John Gilbert 
• UCSD:  Allan Snavely 
• UCSD:  Dave Benson 
• UMD:  Vic Basili 
• UMD:  Jeff Hollingsworth 
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8. Results, Conclusions & Technology Transfer 
 
The HPCS Analysis project supported DARPA’s HPCS effort, allowing ISI to work 
with MITRE and Lincoln Labs to represent Defense computing needs to the broader 
HPC community, to develop the HPCS benchmarking suite, prototype the 
www.highproductivity.org web site, and to develop methodologies for measuring both 
the development as well as the execution time productivity of Defense HPC systems 
and their programming environments.   In doing so it achieved all of the goals set for it 
in the HPCS Analysis project and its supplement. 
 
There are some early results to report from the HPCS Analysis project.  The HPCS 
benchmarks and the HPCchallenge benchmark were developed.  We released the HPCS 
discrete mathematics benchmarks to the HPC community and maintain the 
RandomAccess code.  We initialized the www.highproductivity.org web site and 
transitioned its maintenance to Georgia Tech.  We planned and organized the HPCS 
phase two development time and execution time activities.  Furthermore, our team even 
did some pioneering work, performing development time experiments in HPC 
classrooms. 
 
The HPCS benchmarks, HPCchallenge, and TopCrunch are already in use by the 
broader HPC and MCAE communities.  The productivity methodologies have been 
published, but not yet incorporated into any government procurements at this time.  The 
execution and development time research projects are too premature to have produced 
any definitive conclusions. 
 
9. Inventions, or patent disclosures 
 
No inventions were disclosed or patents submitted by the ISI HPCS Analysis research 
team or its subcontractors. 
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ASCI  Accelerated Strategic Computing Initiative 
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CCS  Center for Computing Sciences 
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DOD  Department of Defense 
DOE  Department of Energy 
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FFT  Fast Fourier Transform 
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HPC  High Performance Computing 
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12. Appendices 
 
Appendix A:  January 2004 HPCS Productivity Workshop Agenda 
 
Tuesday, Jan 13: Productivity Team 
08:30-09:00 Breakfast 
09:00-09:30 Opening Remarks (Graybill/DARPA & Johnson/DoE OoS)  
09:30-10:00 Program Overview and Goals (Kepner/Lincoln)  
10:00-11:30 Development Time Working Group 
           -Pre-Pilot Results and Pilot Plans (Basili/UMD) [50 min] 
           -Break [15 min] 
           -HPC Class Overview (Gilbert/UCSB) [25 min]  
11:30-12:00 Execution Time Working Group (Lucas/ISI)  
12:00-01:00 Lunch  
01:00-01:30 Programming Models Working Group (Lusk/ANL & Snir/UIUC))  
01:30-02:30 Benchmarks Working Group 
           -Overview and v0.1 Compact Apps (Koester/Mitre) [30 min] 
           -HPCchallenge Results (Luszczek/UTK) [30 min]  
02:30-03:00 Test & Spec Environment Working Group (Krishnamurthy/OSU) 
03:00-03:15 Break  
03:15-03:45 Existing Codes Analysis Working Group (Post)  
03:45-04:30 Workflows, Models and Metrics Working Group (Kepner/LL) 
04:45-05:30 Discussion 
 
Wednesday, Jan 14: Productivity Team & Individual Working Groups  
08:30-09:00 Breakfast  
09:00-10:30 Vendor Updates and Feedback 
      -Web Matrix ... (Mizell/Cray) [30 min] 
      -Purpose Benchmarks ... (Votta/Sun) [30 min] 
      -Productivity status update ... (Rajamony/IBM) [30 min] 
10:30-10:45 Break  
10:45-11:50 Partner Invited Presentations 
      -Code Profiling (Davis/HPCMO & Snavely/UCSD) [45 min] 
      -Council on Competitiveness [20 min] 
11:50-01:00 Lunch 
01:00-02:00 Roundtable Discussion and Feedback 
02:00-05:00 Individual Working Group Meetings (Optional) 
      -Development Time Working Group (Lead: Basili/UMD) 
      -Execution Time Working Group (Lead: Lucas/ISI) 
      -Existing Codes Analysis Working Group (Lead: Post/LANL)  
           -Workflows, Metrics, Models Working Group (Lead:  Kepner/LL) 
 
Thursday, Jan 15: Individual Working Group Meetings (Optional)  
09:00-12:00 Benchmarking Summit (Lead: Koester/Mitre) 
      -Test and Spec Working Group (Lead: Krishnamurthy/OSU) 
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Appendix B:  Tiled Architecture Report from ISI East 
 

Tiled architectures are an approach for a 
scalable microprocessor that addresses 
issues of continued technology scaling. 
Tiled processors implement a two-
dimensional array of processors (tiles) that 
are connected with a mesh topology. Each 
tile occupies a fraction of the chip space, 
and clock speeds can be high since intra-
processor signals only need to travel only a 
short distance. One example of a tiled 
microprocessor is the Raw chip, which has 
been developed and implemented at MIT. 
The current Raw implementation contains 
16 tiles on a chip connected by a very low 

latency 2-D scalar mesh network. The Raw scalar mesh network is implemented with 
four sub-networks: two static and two dynamic. The dynamic networks require that the 
processor construct a header that identifies the length and destination of a message, and 
then messages are dynamically routed to their destination. 
 
Messages in the static network do not require headers. Programmable routers in the static 
network are preprogrammed to implement the appropriate routing. These programmable 
routers improve performance in two ways. First, the elimination of headers improves 
network utilization and eliminates the software overhead required to create a header.  
Second, the fact that routing is determined statically at compile time allows optimized 
global routing to be performed. This static global optimization has the potential to 
increase network throughput. The disadvantage of using the static network is that inter-
tile routing information must be determined at compile time. It is difficult or impossible 

to extract routing 
information from most 
programs written in 
common programming 
languages such as C or 
Java.  MIT is developing a 
stream programming 
language called StreaMIT 
that allows a compiler to 
extract routing information 
from a program, but this 
requires applications to be 
re-written in this new 
language. We have 
developed a tool set that 
improves programmer 
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productivity for tile-based architectures by allowing minimal changes to a message-
passing program written in C to be used to extract static routing information. 
 
Our tool set requires that a parallel message passing program written in C be modified to 
use our Static Communication API. The Static Communication API allows the program 
to be run in a profile mode, during which static routing information is automatically 
extracted from the program. Our routing software can then be used to produce a program 
for the static routing network. Finally, the same program can be run in execution mode 
and static communication is done over the Raw static network. This tool flow is shown in 

Figure 2. 
 
It is beyond the scope of this study 
to measure the productivity 
improvement of programmers 
through the use of this tool. 
However, our experience is that it 
is much easier and faster to 
program using this API than it is to 
learn the details of programming 
the static network. We have 
compared the execution 
performance of two application 
kernels using three programming 
method. The results are shown in 
Figure 3 and Figure 4. The first 
method is to manually program the 
static network. This method can 
achieve optimal performance 
(assuming the programmer has 
time to optimize routing and code), 
but is the most time consuming. 
The second method is to use our 
Static Communication API as 
described in the previous 
paragraph and shown in Figure 2. 
The third method is to use the 
dynamic network using a library 
based dynamic communication 

API.  This third method is the easiest for the programmer but incurs the overheads of the 
dynamic network. Figure 3 shows that for smaller corner turns, our Static 
Communication API achieves performance roughly equal to that of the manually 
programmed implementation, and both static network implementations perform 
significantly better than the dynamic network implementation. For the largest corner turn, 
there is some performance degradation (about 25%) when the API is used (compared to 
the manual implementation), but the performance is still almost double the performance 
achieved using the dynamic network. The FFT performance is determined more by the 
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computational performance than the communication performance, so all three 
methodologies achieve roughly equal performance. 
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Appendix C:  TopCrunch Report from UCSD 
 
The TopCrunch project was initiated to track the aggregate performance trends of high 
performance computer systems and engineering software. Instead of using a synthetic 
benchmark, actual engineering software applications are used with real data and are run 
on high performance computer systems. The data are available for download in the form 
of data files for our current software suite. With time, we expect to track the evolution of 
delivered performance as a function of enhancements in both software algorithms and 
hardware. The results of the benchmarks are available as submitted, and may be searched 
by data, code name, and year. Series of benchmarks may also be plotted against each 
other. 
 
The benchmark programs were chosen to reflect the types of calculations performed in 
the mechanical and aerospace communities: LS-DYNA (structural dynamics), CTH (fluid 
mechanics), and SPaSM (materials science). These codes have different challenges to 
address in terms of domain decomposition, message passing, load balancing, and 
dynamic memory allocation that makes the comparison of their relative scaling 
interesting.  
 
The benchmark problems were chosen to reflect current engineering practice in the 
real world, and to have a structure that allows them to be scaled up as computer 
performance grows. The problems are not intended to be optimal analyses, i.e., the 
fastest possible choice of options to achieve a particular solution, because engineers 
rarely have time to optimize their analyses in real life. For example, the accuracy of 
the stress distribution in a structural element increases with the number of Gaussian 
quadrature points, but at the expense of speed. For a given level of accuracy, there 
is, therefore, a choice that maximizes speed. It is, however, common engineering 
practice to use more points than absolutely necessary because an inaccurate solution 
will require rerunning the analysis, which effectively doubles its cost and more than 
doubles the wall clock time to get an acceptable answer. The same general 
observation holds true for many other analysis choices to be made. 
 
The site has been successful enough to create controversy among the participating 
vendors. While this has slowed the development of the site to some degree, the level 
of interest by both users and vendors indicates that the site will enjoy long-term 
success. 
 
Three vendors, during the course of this project, questioned the accuracy of each 
other’s benchmark results for LS-DYNA. While over 100 results have been posted 
during the past year, the number available to the public is 77 due to some of them 
being removed as being irreproducible and others being updated as performance 
improves. The data hasn’t been destroyed for any of the results, just made invisible 
to the public. When we have enough data, we will study the historical evolution of 
the benchmark performance. The site rules required that all benchmarks be 
performed with production versions of LS-DYNA. Although the intent was that only 
the versions generally available to commercial customers could be used, some 
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vendors had a broader interpretation. One vendor modified the binary to enhance the 
performance, and another modified the source code, and neither version was 
generally available. Gains of up to 25% in performance were obtained for the 
benchmark problems. 
 
Livermore Software Technology Corporation (LSTC), which produces LS-DYNA, 
initially supported tweaking the code by the vendors in the belief that the customers 
would benefit from the competition for better performance. Since the enhanced 
versions hadn’t been run through the suite of test problems for quality assurance, 
they turned out to be less robust than the production versions. The vendors refused 
to disclose their modifications to the binaries and the source code because they 
didn’t want their competitors to benefit from the enhancements. Since LSTC didn’t 
know the nature of the changes to their own product, they were unable to support 
the vendor-enhanced versions. LSTC therefore withdrew support of having the 
benchmark results for the vendor-enhanced versions on the Top Crunch site. 
 
An additional complicating factor was the rolling nature of the commercial releases 
of LS-DYNA. As new compilers and operating systems become available, and 
vendor-specific bugs are eliminated, LSTC releases incremental updates for 
individual machines. Vendors submitted results for the incremental updates prior to 
their appearance on the FTP site, again resulting in charges of unfair tweaking. 
 
Several vendors sent ultimatums during the last six months threatening to withdraw 
their results from the site unless the Top Crunch restricted the results to only 
versions that are available on the LSTC web site at the time of the benchmark 
submission. To maintain the participation of the majority of the vendors, this has 
now become the standard. One vendor has withdrawn permanently. 
 
The difficulties associated with LS-DYNA are multiplied with CTH and SPaSM 
since they are codes from the national laboratories that are distributed to users as 
source code, making it impossible to prohibit tweaking either the source or binary. 
Given the controversy we experienced with LS-DYNA, we are discussing with 
vendors the rules that should be imposed for benchmarking these codes. Progress 
has been slow because vendors whose machines are performing well with LS-
DYNA are concerned that their machines may appear slower if other vendors 
aggressively modify these codes. Due to the security issues with CTH, and the small 
user base (in comparison with LS-DYNA), the vendors also seem less interested in 
benchmarking these codes. It may, in the long run, be a better strategy to restrict 
Top Crunch to commercial codes, and replace CTH with Fluent.  
 
With the exception of the San Diego Supercomputer Center, obtaining benchmark 
results from supercomputer centers has proven difficult. Obtaining good parallel 
performance requires having a dedicated machine. For a major supercomputer 
center, these means getting them to have a system operator run the benchmarks 
during a scheduled maintenance period. In addition, LS-DYNA requires license 
keys for each processor, or a network license that requires a client program on each 
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processor. The level of effort required to install the licensing keys/clients on 
hundreds of processors has also been a major obstacle with the national 
supercomputer centers. 
 
In summary, we have met our primary goal of obtaining benchmarks of actual 
commercial engineering software over a wide range of machines. Because of the 
commercial importance of our results to the vendors, whose customers recognize the 
limitations of using LAPACK to choose machines, we have found ourselves in the 
middle of controversies that we didn’t anticipate. Although this initially slowed the 
progress of the site, the visibility gained from the controversies will ensure the 
project’s longevity. 
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Appendix D:  Development Time Report from UMD 
 

Development Time Working Group 
Report for Phase 1 

 
Sima Asgari1, Vic Basili12, Jeff Carver1, Lorin Hochstein1, Jeff Hollingsworth1, 

Forrest Shull2, Marvin Zelkowitz12 
1 University of Maryland   2 Fraunhofer Center - Maryland 

 
July 2004 

 
1. Introduction 

The main goal of HPCS project is the analysis of vendor technologies to predict their 
productivity from the point of view of purchaser (government).  Within the HPCS 
framework, the Development-time working group aims at the analysis of existing HPC 
technologies to evaluate them with respect to development and execution time tradeoffs 
and the analysis of existing HPC technologies to understand them with respect to 
common software development. In order to achieve these goals we must characterize and 
understand individual technologies by analyzing each HPC technology to understand it 
with respect to attributes such as development/execution time tradeoff, ease of use, ease 
of learning and types of defects, for a particular set of context variables. Different metrics 
and models exist for measuring and predicting execution time under various conditions. 
However, little empirical study has been done on the human effort required to implement 
those solutions. As a result, many development decisions about language and approach 
are made based on anecdote, “rules of thumb,” or personal preference. Without empirical 
data, governmental organizations cannot take into account the effects that a high 
performance computing system will have on development time. Such data is necessary to 
help guide decision-making when purchasing the next generation of high performance 
computing systems. 

 
2. Overview 

Understanding a discipline involves generating hypotheses, building models (e.g. 
application domain, workflows, problem solving processes), checking whether our 
understanding is correct (e.g. testing our models, experimenting in the real world), 
analyzing the results to learn, encapsulate knowledge, refine models and evolve 
hypotheses. The first step towards understanding a discipline is the definition of various 
variables and factors involved.  In the context of HPCS development time, three main 
types of variables as controlled independent variables; non-controlled independent 
variables and dependent variables can be recognized.   Controlled independent variables 
are factors whose effects are to be studied and manipulated in an experiment. Examples 
of these variables are problem type (embarrassingly parallel, nearest-neighbor), problem 
domain (weather simulation, image processing), problem size (kernel, compact app), 
hardware (cluster, SMP), programming model (message passing, shared memory, mixed), 
implementation of programming model (MPI, OpenMP), base programming language (C, 
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Fortran, Matlab), access to existing serial implementation and workflow/process.  Non-
controlled independent variables are factors which the experimenter cannot usually 
control but may have an effect on dependent variables. For HPC, context variables are 
usually human attributes such as experience, knowledge of problem domain, major 
(physics, CS, EE, math), relevant courses, motivation and inherent programming ability.  
Dependent variables are factors which are supposed to be explained by changes in 
independent variables. Variables such as execution time, speedup relative to serial 
implementation, development time(total or breakdown by activity and SLOC are 
dependent. 
 

3. Experimental Studies 
In the Development-time working group we conduct three different types of experimental 
studies. 
 
3.1 Classroom Studies 
Classroom studies are subsets of HPC development environment similar to “lone 
researcher” work environment. The results obtained from these studies could be 
generalized scientists who need to do HPC programming but do not have HPC 
experience. Through classroom studies we are able to measure ease-of-learning, provide 
evidence for/against “tribal lore” and related the results to the kernels developed by the 
Benchmarking Working Group. Other advantages of classroom studies are running 
experiments with more subjects, less cost and faster results, studying the effects of 
variables which may be impossible to control on a larger project, identifying potentially 
statistically significant relationships among a large number of variables and debugging 
experimental protocol before applying it to professionals. Table 1 represents classroom 
study schedule.  

 

 
Table 1: HPCS Classroom studies 

 
To date, the classroom studies were run in 6 classes, 13 assignments were given and data 
from 100 subjects was captured, 71 background questionnaires, 41 post-test 
questionnaires and about 500 effort-log entries were collected. Nearly 1,500 hours of 
effort was reported, 26,000 time-stamped source files with activity, 2,600,000 lines of 
code (multiple versions of each file) and 16,000 time-stamped execution runs were 
captured. 
 
3.1.1 Pilot-study Successes 
Through pilot-studies good collaboration with all professors involved was established, 
empiricists learned about HPCS and HPC professors learned about human subjects 
experimentation, a rich set of hypotheses was generated, a web-based experience base 

Study Period Location Status 

Pre-Pilot Study Fall 2003 University of Maryland Completed –Analyzed  

Pilot Studies Spring 2004 MIT, USC, UCSB, UMD Completed –Under analysis 
Pilot Study Fall 2004 UCSD TBD 
Full Study Spring 2005 TBD TBD 
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was created, automatic data collection mechanisms were established. Good data on 
variables such as source code, different development activities and the time spent during 
activities was captured. 
 
3.1.2 Pilot-study Lessons Learned 
Through pilot studies we learned valuable lessons about HPC infrastructure and 
automated and manual data collection.  Technical difficulties are common on HPC 
machines and it is not always possible to re-run the code on the same machine later on.  
Data collection process is affected by students’ access to un-instrumented machines and 
frequent questions on instrumented machines may result in inaccurate answers.  
Furthermore, the experimentalists must set up data collection mechanisms, otherwise 
important data may not be collected.  Reported effort logs are unreliable and the best way 
to get subjects to complete questionnaires is to be in the room as they fill them out. 
 
3.2 Industrial case studies 
Our first case study was the implementation of executable benchmark reference in MIT 
Lincoln Labs. The problem to be solved is HPCS Scalable Synthetic Compact 
Applications. The goal is to develop a compact application that has multiple analysis 
techniques (multiple kernels) accessing a single data structure representing a directed 
multi-graph with weights. The problem includes the implementation of four 
computational kernels: Graph Construction, Sort on Large Sets, Graph Extraction and 
Graph Clustering. The implementation is not yet complete.  We are planning new 
industrial development. 
 
3.3 Observational Studies 
In order to evaluate our experimentation mechanisms and tools and compare the results 
obtained from various mechanisms, we are designing controlled observational studies. In 
these studies we observe the developer throughout the development phases and collect 
the development data in several ways and by comparing the results evaluate the 
effectiveness of data collecting methods such as, manual data collection, Eclipse, 
Hackystat and other instrumentations.  
 
4 Data Analysis and Hypotheses 
Analysis of collected data from Pilot studies is underway. Although the data is not yet 
validated, a rich set of hypotheses has emerged from HPCS course professors’ 
observations, the data and the experts in HPC community. Other than creating new 
hypotheses and evaluating them, we are collecting the “Tribal Lore” from the community 
and trying to evaluate their validity by using the experimental data.  
Sample hypotheses are given below.  
 
Professors’ Hypothesis 
The following hypothesis was suggested by Mary Hall (instructor of USC595 pilot 
study): 
 
Hypothesis 1: Performance tuning of uniprocessor code (optimizing for cache and 
registers) takes a substantial fraction of the overall tuning effort. 
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Figure 1 represents the effort students spent on various activities for the study USC595. 
 

 
Figure 1. : Effort percentage spent on each activity (USC595) 

 
As seen in the figure, the collected data approves the hypothesis. 
 
Existing Hypothesis 
Hypothesis 2: The variation in the speedup of MPI codes will increase with the number 
of processors 
 

 
Figure 2. Evidence for hypothesis2 from pilot study CMSC818S 
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New Hypothesis 
The following hypothesis emerged from collected data. 
Hypothesis 3: There is a difference between people who develop their code at a steady 
pace and those who “panic” at the deadline in terms of: code size, total effort, code 
performance / speedup and defects. 
Figure 3 represents the data that this hypothesis emerged from: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Steady Development (left) versus Panic (right) 
 
5 Conclusions 
5.1 Working Group Interactions 
We work together with the Existing Code working group in order to integrate questions 
from their professional developer surveys into our classroom surveys where possible. We 
share our experiences and lessons learned from case studies, controlled experiments and 
data analysis aspects.  We collaborate with the Benchmarking working group to use 
Kernel definitions in development time experiments and to determine which kernels are 
covered by existing classroom assignments. We also study development effort for 
Compact Applications defined by this working group. The Compact Applications could 
be used as basis for larger projects in HPC courses. 
 
5.2 Future Work 
We are planning to create a clearinghouse of HPCS data. Towards this goal a website of 
hypotheses and their supporting data has been created.  More analysis will be carried out 
on the data by taking various context variables into account. The relationship between 
involved variables will be more clearly defined. Concrete metrics will be defined for each 
hypothesis to allow measurement and model Based on these metrics the set of hypotheses 
will be refined so that the hypotheses will be prioritized based on the support they receive 
from the data and the unsupported ones could be eliminated.  We are looking to identify 
more professional case studies, observational studies and additional pilot studies (Fall 
2004)  
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Appendix E:  Development Time Report from UCSD 
 
This past year Dr. Alan Snavely collaborated with the rest of the HPCS software 
engineering team and other academics to design and implement a new class curriculum 
that includes the conducting of HPC software engineering experiments. A sustainable 
course syllabus was evolved and adopted by several computer science departments. 
Thereby a body of evidence is being built up, and will continue to be built up ongoing, to 
answer the question “what is the development time versus performance tradeoff when 
using today’s programming paradigms on HPC platforms? 

 
Dr. Snavely contributed input from the UCSD Computer Science curricula, and presented 
to the team, then further analyzed, existing class structure and parallel coding 
assignments in UCSD’s graduate level parallel programming courses; thus to help answer 
the question: “what is current best-practice as to methods taught”? Next the team 
participated in a pilot study of development time versus execution time for different 
parallel programming approaches such as MPI, threading (OpenMP), parallel arrays (Co-
Array Fortran, UPC) etc. on various HPC platforms. The results of these preliminary 
investigations, including the class taught by Dr. Mary Hall at USC to which Dr. Snavely 
provided technical assistance, are being folded into a new course syllabus that will 
include experiments such as the following to be conducted by Dr. Snavely in the Fall at 
UCSD (highly simplified example): Assign students a set of parallel programming 
assignments to code up. Step 1: Code problem(s) in serial. Step 2: Code problem using 
OpenMP or code problem using MPI. Step 3: Optimize for number of programs solved in 
a fixed time period (productivity) and/or speed and/or scalability and serial efficiency 
(performance). Compare the performance and code size and effort of the different 
approaches. Dr. Snavely provided technical support to Dr. Mary Hall and Dr. Jacqueline 
Chame in their class at USC taught using SDSC’s Blue Horizon Power3 system and 
incorporated lessons learned into the parallel class (CSE260) that he will teach in the Fall 
at UCSD. 

 
In Fall 2004 Dr. Snavely will teach the developed syllabus in a parallel class in which 
students participate in human experiments to quantify productivity by having their 
programming behaviors monitored as part of course projects to develop HPC problem 
solutions. He will especially concentrate on quantifying the time-to-correct solution from 
the programming standpoint vs. additional time required to achieve the best-optimized 
solution (with respect to wall-clock execution time) tradeoff.  The basic approach is a 
programming contest whereby points are awarded for number or problems solved and/or 
performance of solution. 
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Appendix F:  Development Time Report from UCSB 
 
The University of California at Santa Barbara accomplished four principle objectives: 
 
1.  Developed strategy and materials for an HPC course to be included in the pilot study 
2.  Conducted a pilot study in an HPC course at UCSB 
3.  Performed preliminary experiments to extend data collection and analysis techniques 
4.  Prepared pre-pilot experiments within an HPC environment for use in the studies. 
 
A brief synopsis of each accomplishment follows. 
 
1. Developed strategy and materials for an HPC course to be included in the pilot study 
 
During the Fall of 2003 we redesigned the syllabus of the UCSB graduate course CS 
240A, aiming to offer it in Spring 2004.  The new course is "an interdisciplinary 
introduction to applied parallel computing on modern supercomputers.  Topics include 
applications-oriented architectural issues, MPI, OpenMP, parallel Matlab, and parallel 
numerical algorithms." 
 
The redesign had three goals.  First, the new course is to have a distinctly applied and    
interdisciplinary character.  It is to be a required course for first-year graduate students 
(Master's and PhD) in UCSB's Graduate Specialization in Computational Science and 
Engineering.  In this program, students obtain a MS or PhD in a traditional discipline 
(Computer Science, Mechanical and Environmental Engineering, Chemical Engineering, 
Electrical and Computer Engineering, or Mathematics) with a thesis jointly supervised by 
faculty in different disciplines.   
 
The second goal for the redesigned course was to develop several programming project 
assignments from CS&E application areas.  Implementations were to be done using three 
different models of computation:  message-passing (using MPI); shared-memory (using 
OpenMP); and novel (using our prototype Matlab*P system).   
 
The goal for the redesigned course was to facilitate quantification of the productivity of 
the students, for the HPCS pilot study. 
 
2.  Conducted a pilot study in an HPC course at UCSB 
 
Working with the UMD team, we conducted a pilot productivity study in CS 240A 
during the Spring quarter, March to June 2004.   
 
We used the three technologies we had planned, MPI, OpenMP, and Matlab*P.  Our two 
primary computing platforms were a 32-processor Beowulf cluster belonging to UCSB 
(on which the students ran MPI, 2-processor OpenMP, and Matlab*P) and the Blue 
Horizon and DataStar HPC systems at the San Diego Supercomputer Center (on which 
the students ran MPI and multiprocessor OpenMP).  The course included 24 first-year 
graduate students, of which 16 participated in the pilot study.  Approximately 2/3 of the 
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students were from the Computer Science Department and 1/3 from Mechanical and 
Environmental Engineering. 
 
The students did four individual assignments (as part of the instrumented pilot study).  
They were: 
 
a. A highly parallel Monte Carlo problem, the    Buffon-Laplace needle (in MPI, 
OpenMP, and Matlab*P). 
 
b. A parallel sorting problem (in MPI and Matlab*P). 
 
c. A discrete simulation problem, the game of Life (in MPI and OpenMP). 
 
d. An irregular scientific kernel, sparse matrix-vector multiplication and conjugate 
gradient iteration (in a mixture of MPI and Matlab*P). 
 
The students also did term research projects in teams of two or three; the pilot study did 
not collect productivity data on these projects. 
 
In collaboration with the UMD team, we collected several kinds of data on the students' 
productivity, including timestamps and source code at each compile, execution 
timestamps, student-reported effort logs and reasons for recompiles, and pre- and post-
study questionnaires. 
 
On the whole, the data collection went well, and we learned a great deal that will serve us 
during next year's full study.  Our ability to collect data on the remote systems at SDSC 
was limited due to some (unrelated) security issues at the center and due to the 
decommissioning of Blue Horizon and its mid-study replacement by DataStar.   
 
3.  Preliminary experiments to extend data collection and analysis techniques 
 
At the end of the project, we were initiating the analysis of the data we collected.  In 
addition to the analysis being done by the Maryland team, we have started an experiment 
to determine what can be learned by "replaying the entire programmer experience" -- that 
is, by using the collected history of program updates and executions to recreate every 
single test run that was done during development.  This is a computationally intensive 
experiment, but we are after all in the business of using high-performance computing to 
answer research questions.  Our first preliminary experiment is using heuristics to guess 
the point in the programmer's workflow represented by each compile-and-run cycle.  We 
are planning to pursue this idea further during the coming months in collaboration with 
the University of Maryland team. 
 
4.  Preparation and pre-pilot experiments with an HPC environment for use in the studies. 
 
We are developing a novel HPC programming environment for inclusion in some of the 
productivity studies.  Our environment, called Matlab*P, is a flexible interactive 
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environment that enables computational scientists and engineers to program high-
performance parallel computers.  During the reporting period, we have developed support 
for distributed irregular sparse matrix data and operations in Matlab*P, including a good 
deal of infrastructure for combinatorial scientific computations.  We have also made the 
preliminary steps in the design of a global address space (GAS) data view that will 
complement Matlab*P's existing data-parallel SIMD and task-parallel SPMD views and 
increase the expressiveness of the language. 
 
We used our prototype version of Matlab*P in the course assignments and projects in CS 
240A in Spring 2004.  Due to its preliminary nature we did not collect productivity data 
on Matlab*P this time around, but we plan to do so during the next offering of CS 240A 
in the full study. 
 
 
PATENTS SUBMITTED IN REPORTING PERIOD:   
 
none 
 
PAPERS SUBMITTED AND PRESENTED IN REPORTING PERIOD: 
 
Ron Choy, Alan Edelman, John R. Gilbert, Viral Shah, and David Cheng.  "Star-P:  High 
productivity parallel computing."  Accepted to Eighth Annual Workshop on High-
Performance Embedded Computing (HPEC-04). 
 
John R. Gilbert and Viral Shah.  "Graphs and sparse matrices in an interactive 
supercomputing environment." Minisymposium talk presented at SIAM Annual Meeting, 
2004. 
 
Imran Patel and John R. Gilbert.  "Grid*P:  Interactive supercomputing on the grid with 
Matlab."  Presented at SIAM Conference on Parallel Processing for Scientific 
Computing, 2004. 
 
Viral Shah and John R. Gilbert.  "Sparse matrices in Matlab*P:  Design and 
implementation."  Accepted to 11th Annual International Conference on High 
Performance Computing (HiPC 2004). 
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Appendix G:  Development Time Report from MIT 
 
The Massachusetts Institute of Technology accomplished four principle objectives: 
 
1.  Developed strategy and materials for an HPC course to be included in the pilot study 
2.  Conducted a pilot study in an HPC course at UCSB 
3.  Performed preliminary experiments to extend data collection and analysis techniques 
4.  Prepared pre-pilot experiments within an HPC environment for use in the studies. 
 
A brief synopsis of each accomplishment follows. 
 
1.  Developed strategy and materials for an HPC course to be included in the pilot study 
 
During Fall 2003 we modified somewhat the syllabus of the MIT graduate course 
18.337/6.338, for Spring 2004.  The course is "Applied Parallel Computing" on modern 
supercomputers.  Topics include applications- oriented architectural issues, MPI, 
OpenMP, parallel Matlab, and parallel numerical algorithms. 
 
We had four goals: 
 
a. The course has a distinctly applied and interdisciplinary character.  It is a popular    
course for first-year graduate students (Master's and PhD) in engineering and science.  
 
b. We developed and improved upon several programming project assignments.    
Implementations were to be done using three different models of computation: message-
passing (using MPI); shared-memory (using OpenMP); and novel (using our prototype 
Matlab*P system). 
 
c. We designed the course to facilitate quantification of the productivity of the students, 
for the HPCS pilot study. 
 
d. We put the course on the MIT opencourseware web page. 
 
We kept the Singapore students informed as non-participants 
 
2.  Conducted a pilot study in an HPC course at MIT 
 
Working with the UMD team, we conducted a pilot productivity study in 18.337/6.338  
during the Spring semester, February to May 2004.  We used the three technologies we 
had planned, MPI, OpenMP, and Matlab*P.  Our two primary computing platforms were 
a 16 processor Beowulf cluster now three years old, and midway through the semester we 
acquired a second Dell cluster. 
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The students did three individual assignments (as part of the instrumented pilot study).  
 
They were:  
 
a. A highly parallel Monte Carlo problem, the Buffon-Laplace needle (in MPI, OpenMP, 
and Matlab*P).  (Same as Santa Barbara) 
 
b. The grid of resistors problem  (in openMP, MPI and Matlab*P). 
 
c.  A Laplace Equation Problem (in MATLAB*p, MPI and OpenMP optional). 
 
The students also did term research projects in teams of one, two or three; the pilot study 
did not collect productivity data on these projects. In collaboration with the UMD team, 
we collected several kinds of data on the students' productivity, including timestamps and 
source code at each compile, execution timestamps, student-reported effort logs and 
reasons for recompiles, and pre- and post-study questionnaires.  
 
On the whole, the data collection went well, and we learned a great deal that will serve us 
during next year's full study.   We had some problems with the move mid semester from 
Technology Square to the Stata Center.  Machines that had worked did not survive the 
move so well.  We had further breakdowns as well.  This was statistically unusual when 
compared with previous years. 
 
3.  Performed preliminary experiments to extend data collection and analysis techniques 
 
At the end of the project, the analysis of the data we collected is only beginning.  The 
analysis is being led by the University of Maryland team. 
 
4.  Prepared pre-pilot experiments with an HPC environment for use in the studies. 
 
We are developing a novel HPC programming environment for inclusion in some of the 
productivity studies. Our environment, called Matlab*P, is a flexible interactive 
environment that enables computational scientists and engineers to program high-
performance parallel computers. MATLAB*p is likely to go commercial very soon in the 
form of Interactive Supercomputing.  This will allow greater support possibilities and an 
industrial strength environment. 
 
We used our prototype version of Matlab*P in the course assignments and projects in 
18.337/6.338 in Spring 2004.  Due to its preliminary nature we did not collect 
productivity data on Matlab*P this time around, but we plan to do so during the next 
offering in the full study. 
 
PATENTS SUBMITTED IN REPORTING PERIOD:  none 
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PAPERS SUBMITTED AND PRESENTED IN REPORTING PERIOD: 
 
Ron Choy, Alan Edelman, John R. Gilbert, Viral Shah, and David Cheng.  "Star-P:  High 
productivity parallel computing."  Accepted to Eighth Annual Workshop on High-
Performance Embedded Computing (HPEC-04). 
 
Parallel Matlab, doing It Right, Alan Edelman, Ron Choy. To be published. IEEE 
Proceedings. 
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1.  INTRODUCTION 
 
The "p" in the DARPA HPCS program [http://www.darpa.mil/ipto/research/hpcs/] 
acronym stands not for "performance" but "productivity" ("High Productivity Computing 
Systems").  High productivity is considered to result from a combination of: 

• Performance: Improve the computational efficiency and performance of 
critical national security applications 

• Programmability: Reduce cost and time of developing HPCS application 
solutions 

• Portability: Insulate research and operational HPCS application software 
from system specifics 

• Robustness:  Deliver improved reliability to HPCS users and reduce risk 
of malicious activities 

This study was undertaken as a first step in understanding the characteristics of 
computationally intensive algorithms in one area of intelligence processing.  Since this is 
meant to be an unclassified report, of necessity most aspects of the domain can be 
discussed only in somewhat general terms, and the specific algorithm chosen for study is 
described mathematically, without discussion of its purpose, or where it fits into the 
larger intelligence processing environment.  The algorithm does represent a key link in 
operational intelligence systems of critical national importance. 
 
2.  HIGH PERFORMANCE ALGORITHM DEVELOPMENT FOR THIS DOMAIN 
 
In general terms, the following are some key characteristics of the way algorithms are 
developed and implemented within one subset area of intelligence processing. 
 
Programming Language:  C or C++, although some areas are experimenting with Java, 
especially for J2EE-style network programming and user interface support.  There is also 
some legacy code still running that was written in Fortran, Assembler, and other 
languages. 
 
Lifetime of a single application code:  up to 20 years 
 
Development Teams:  usually between 2 and 15 people for any single algorithm or 
application area. 
 
Development Environment:  The systems that these algorithms are part of are 
themselves very large and distributed across dozens or hundreds of compute and data 
servers.  The end users of the systems are both local to the main processing chains, and 
widely distributed geographically.  Very high data rates must be supported for input, and 
in some instances on output as well.  The requirements (and changing requirements) for 
these systems thus tend to stress whatever compute, data, and network capabilities exist 
at any particular point in time, and this has a large impact on the way applications are 
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developed, both for modifications to existing systems, and introduction of new types of 
processing. 
 
Development Approach:  This can best be described as bursts of concentrated efforts 
dealing with the "crisis of the moment".  Continually "shoe-horning" applications onto 
platforms tends to lead to complex, expensive to maintain code, and tends to work against 
the HPCS "programmability" objective mentioned above.  Because these systems are so 
large, and also due to security considerations, individual programmers rarely have a good 
understanding of the "big picture" that their piece fits into.  This has two implications: 
 
(1)  Programmers tend to fall into "sub-optimization" traps while attempting to make 
their part of the processing "ultra efficient" (at the expense of code simplicity, clarity, and 
maintainability), and sometimes with negative impacts on the overall processing 
effectiveness. 
 
(2)  Since there tends to be poor coordination, understanding and control of the overall 
system architecture, system processing bottlenecks and imbalances can develop that must 
be "worked around" with a great deal of (heroic) programming effort, which tends to 
further complicate system and application program development efforts. 
 
There is also a larger organizational effect on the way these systems have evolved, since 
various parts of the processing are developed at various times by competing contractors 
and sometimes for competing government organizations.  This can have a further "sub-
optimizing" effect on the code bases on a larger scale than the individual programmer 
sub-optimization mentioned above. 
 
3.  A REPRESENTATIVE (ABSTRACT) ALGORITHM 
 
The algorithm described in this section has several interesting general characteristics.  
First, the amount of computing required by the problem grows exponentially in the size 
of the sets of elements processed.  This means that an exhaustive computing approach is 
not possible except in trivially small cases, and variants of the algorithm compete on how 
well the heuristics they employ perform.  Since the actual "answer" is in general not 
known, it is not even possible to determine how well any of the heuristics perform 
compared to "the answer" for a particular input data set. 
 
The problem is a constrained set partitioning problem where the "hardest" constraint test 
(Step 4 below) is only performed when the easier constraints have not been conclusive, 
because it is computationally much more expensive (matrix operations on floating point 
values) than the easier constraints.  It is also the most powerful constraint in that it can 
result in an answer that can be output immediately for further processing.  This problem 
is also a "soft" real-time problem in that there is a time value attached to any answers that 
can be determined within, for example, 15 minutes, and any answers found after that time 
are of rapidly decreasing value, and so are generally not computed.  The current form of 
the algorithm has been driven largely by this real-time constraint.  More comprehensive 
set partitioning approaches to the problem are also of considerable interest. 
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Algorithm 1: Set Partitioning Under Constraints Including Nonlinear Least Squares 
 
Let S be a totally ordered set of size 1,000 to 50,000 elements.  The elements of S are 
processed sequentially and individually.  The algorithm terminates when all of the 
elements of S have been processed. 
 
The algorithm uses an undirected graph G whose vertices are subsets of S.  If A and B 
are subsets of S and vertices of G, then there is an edge connecting vertices A and B in G 

if and only if A ∩ Β  ≠  ∅ (Edge Property).  There is also a total ordering on the vertices 
of G. 
 
Let s[i] be the next element of S to be processed.  The algorithm traverses the vertices of 
G in order, and for each vertex v[j] computes the value of a function f that determines the 
next step the algorithm will take.  The function f has the form 

f: S × G → {0,1,2} 
and the algorithm behavior in response to the various possible values returned by f is: 
 
f(s[i],v[j]) = 0 :  Move to the next vertex v[j+1] and continue by computing f(s[i],v[j+1]). 
 
                 = 1 :  Duplicate the vertex v[j] creating a new vertex, add element s[i] to the 

new vertex, add the new vertex immediately before v[j] in the ordering 
of vertices of G, renumber the vertices of G, recompute the edges of G to 
maintain the Edge Property, and continue with f(s[i],v[j+2]). 

 
                 = 2 :  Add s[i] to v[j], recompute the edges of G to maintain the Edge Property, 

delete the immediate neighbors of v[j], recompute the edges of G to 
maintain the Edge Property after the deletion, and continue by 
computing f(s[i+1], v[1]) i.e. processing of element s[i] is complete. 

 
If the entire graph G is traversed and no function evaluation of f has returned 2, create a 
new vertex v[n] in G (last in the ordering of vertices) consisting of s[i]. 
 
The behavior of the function f is as follows.  f is evaluated in four steps of increasing 
computational complexity and decreasing probability of being executed. 
 
Step 1: (Relative probability of returning f = 0, vs. proceeding eventually to Step 4:  
1,000,000). 
Computational Complexity:  Small numbers of comparisons of small character strings 
(<= 10 strings of <= 10 characters). 
Result:  Either return f = 0 or proceed to Step 2. 
 
Step 2:  (Relative probability of returning f = 0, vs. proceeding eventually to Step 4:  
10,000). 
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Computational Complexity:  Lookups of thresholds in tables of 100-1,000 entries in 
memory, scalar differences and comparisons against those thresholds. 
Result:  Either return f = 0, or proceed to Step 3. 
 
Step 3:  (Relative probability of returning f = 0, vs. proceeding to Step 4: 100) 
Computational Complexity:  Matrix sums and multiplications of small matrices (order 
≤ 10), 
Result:  Either return f = 0, or proceed to Step 4. 
 
Step 4:  (Relative probability of being executed: 1). 
Computational Complexity:  Nonlinear least squares for ~30 iterations on matrices of 
order ≤ 10.  Multiple matrix operations of order ≤ 30.  Lookups against significantly 
larger tables in memory per iteration, compared to the tables in Step 2.  All matrices and 
arithmetic operations are on double precision floating point values. 
Result:  Return f = 0, 1, or 2. 
 
4.  FURTHER WORK 
 
The algorithm described above represents only one of several critical computationally 
intensive algorithms in this sub-area of intelligence processing.  Consideration should be 
given to developing a similar unclassified characterization and concrete benchmarks for 
those algorithms as well. 
 


